An Overview of Lean Systems Engineering

Updated on June 4, 2020
tamarawilhite profile image

Tamara Wilhite is a technical writer, industrial engineer, mother of two, and published sci-fi and horror author.

Both lean engineering and LSE should start at the design phase.
Both lean engineering and LSE should start at the design phase. | Source

What Is Lean Systems Engineering?

Systems engineering is the design, creation and maintenance of complex systems. Systems engineering tends to refer to computer programs, mainframes, controllers, sensors, remote devices and the networks that control them, either wirelessly or cables.

Lean engineering refers to the principle of deliberate simplification of designs. This can reflect the consolidation of a hundred parts into 20 multifunctional parts, reducing the number of steps to build the product, streamlining the code that runs it or a combination of all of the above.

Lean systems engineering (LSE) is a combination of lean engineering and systems engineering. At its core, it seeks to build a system with the full set of functionality but with a minimum of pieces or components. LSE is almost always focused on complexity reduction, with the assumption that this has a number of benefits like improved quality, greater reliability or less waste.

In short, the goal of LSE is to keep the whole thing simple from drawing board to factory floor to disposal.

Does Lean Systems Engineering Improve Quality?

Lean systems engineering is the byproduct of lean engineering principles or industrial engineering. For example, applying lean manufacturing principles to a production line may result in fewer operation steps. With fewer material transfers and manufacturing operations, the manufacturing system as a whole should see fewer errors because there are fewer opportunities for them to occur. If parts are handled less, there is less opportunity for something to be dropped or misplaced. If assembly steps or manufacturing steps are combined, there may be fewer opportunities for defects to occur.

When lean and lean systems engineering principles are applied to a product, reliability and quality don’t always go up. When a product’s design is simplified per lean engineering principles, such as combining multiple components into one, the reliability rate usually rises because there are fewer connection points that can fail.

However, a very complex part replacing five simple ones may have a higher malfunction rate than the others—raising the possibility that lean systems engineering created an end product more likely to fail than its predecessor. Likewise, a more complex part may be harder to manufacture than several simple ones, so the quality levels of the new part are harder to meet because it is harder to manufacture correctly.

Another example is the elimination of redundancy in the design. If you have fewer sensors or backup components, the odds of overall failure go up because there are fewer backup components to use. Even if the new components are less likely to fail individually, eliminating a third of them still increases the odds of the entire unit failing.

Lean systems engineering applied to software engineering doesn’t always improve quality. Reusing code modules with defects will hurt the quality of the program. Simplifying software testing procedures to exclude rarely occurring failures may mean it isn’t tested for that failure at all.

Reducing the number of requirements for a system could mean failing to meet customer expectations, because you are no longer trying to meet their full list of expectations. When system checks or oversight are eliminated, the system may be simpler, but the odds of failure may go up. Lean systems thus doesn't always equal a higher product.

It is easier to implement an iterative six sigma program for a product than revamping the entire facility.
It is easier to implement an iterative six sigma program for a product than revamping the entire facility. | Source

Why Isn’t LSE as Common as Six Sigma?

LSE requires mapping out the entire workflow of an operation, so that it can be streamlined as a whole. Lean manufacturing projects to improve a specific manufacturing bottleneck or waste problem are smaller in scope, cheaper to implement and more likely to deliver measurable results quickly. The high risk and great cost of lean systems engineering is shared with lean six sigma or LSS, and that is why neither is commonly implemented.

The risk and cost are amplified by the iterative nature of process improvement methodologies. It is easier to change one variable at a time to reduce part failures or out of spec components than rearrange the factory periodically in the hope of making it better.

LSE is hard to implement when your parts come from suppliers. You can design new, consolidated components for them to build, but you have little control over how they build them beyond quality specifications, product testing and systems tests.

Value mapping to a business’ systems can help identify non-value added activities that could be eliminated or consolidated, such as moving material handling closer to the production area or combining inspection and test on the assembly line. Managers tend to resist these tools being applied to human employees, barring the hiring of lower-cost employees to free up experts. And what an LSE sees as complexity managers may think of as solutions.

For example, think of the bizarre warning labels on so many products, all the result of someone actually doing what the warning says not to do. The warning label is a simple administrative solution to what is otherwise a complex engineering solution. More process steps tend to be the solution to problems, adding complexity to systems in the name of preventing future problems.

LSE requires applying lean engineering principles to a product’s design, when getting it working and then getting the price of the product down are the highest priorities.

INCOSE and LSE Certifications

The INCOSE group has an LSE Working Group founded in 2005. LSE experts certified by INCOSE are called Lean Enablers for Systems Engineering (LEfSE). This is similar to the six sigma black belt and lean six sigma belts offered by groups like the Institute of Industrial and Systems Engineers (IISE).

This article is accurate and true to the best of the author’s knowledge. Content is for informational or entertainment purposes only and does not substitute for personal counsel or professional advice in business, financial, legal, or technical matters.


Submit a Comment
  • profile image

    franics oppong 

    2 years ago

    i just started my IT and choose SYSTEM ENGINEERING i want to know more about it and also need help and guidline


This website uses cookies

As a user in the EEA, your approval is needed on a few things. To provide a better website experience, uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at:

Show Details
HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
LoginThis is necessary to sign in to the HubPages Service.
Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
AkismetThis is used to detect comment spam. (Privacy Policy)
HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the or domains, for performance and efficiency reasons. (Privacy Policy)
Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
MavenThis supports the Maven widget and search functionality. (Privacy Policy)
Google AdSenseThis is an ad network. (Privacy Policy)
Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
Index ExchangeThis is an ad network. (Privacy Policy)
SovrnThis is an ad network. (Privacy Policy)
Facebook AdsThis is an ad network. (Privacy Policy)
Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
AppNexusThis is an ad network. (Privacy Policy)
OpenxThis is an ad network. (Privacy Policy)
Rubicon ProjectThis is an ad network. (Privacy Policy)
TripleLiftThis is an ad network. (Privacy Policy)
Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)
ClickscoThis is a data management platform studying reader behavior (Privacy Policy)